

The GigaTech Products **ONS-SI-622-I1-GT** is programmed to be fully compatible and functional with all intended CISCO switching devices. This SFP optical transceiver is based on the ATM/SONET/SONET standard and is designed to be compliant with SFF-8472 SFP Multi-source Agreement (MSA). This module is designed for single mode fiber and operates at a nominal wavelength of 1310nm.

Features:

- Up to 622MBd bi-directional data links
- Hot-pluggable SFP footprint
- Uncooled 1310nm FP laser transmitter
- Duplex LC Connectors
- Built in Digital Diagnostics
- Up to 15km over 9/125 SMF
- Single power supply 3.3V
- Operating temperature range

I-Temp: -40°C to 85°C

Compliance:

- ANSI-T1.646, ATM and SONET and SDH for OC-12/STM-4
- SFP MSA SFF-8472
- RoHS
- Class 1 laser product EN 60825

Applications

SONET OC-12 IR-1/SDH STM S-4.1

Warranty:

GigaTech Branded Optical Transceivers- Lifetime Warranty

General Specifications

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Data Rate	DR		622		MBd	
Bit Error Rate	BER			10 ⁻¹²		
Input Voltage	Vcc	3.1	3.3	3.6	V	
Maximum Voltage	V_{max}	-0.5		4.5	V	Electric Power Interface
Supply Current	Is		165	300	mA	Electric Power Interface
Storage Temperature	T _{sto}	-40		85	°C	Ambient Temperature

Optical Characteristics - Transmitter

Parameter	Symbol	Min	Тур	Max	Unit	Remarks	
Optical Center Wavelength	λ	1260		1360	nm		
Output Optical Power	P _{tx}	-15		-8	dBm	Class 1 Product	
Extinction Ratio	ER	10	11		dB		
Spectral Width (RMS)	Δλ			3	nm		
Relative Intensity Noise	RIN			- 120	dB/Hz		
Optical Rise/Fall Time	T_{RF_IN}			300	ps	20%-80%	
Generated Jitter (peak to peak)	GT_T			0.07	UI		
Generated Jitter (rms)	GT _{RMS}			0.007	UI		
Output Eye	Compliant with SONET OC-12/SDH STM-4 Standard						

Optical Characteristics - Receiver

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Optical Center Wavelength	λс	1260		1600	nm	
Average Rx Sensitivity @ OC-12	R_{X_SEN}	-28		-8	dBm	PRBS 2 ²³ -1
Loss of Signal-Asserted	P _{LOS_A}	-45			dBm	
Loss of Signal-Deasserted	P_{LOS_D}			-28	dBm	
Loss of Signal-Hysteresis		0.5			dB	

Electrical Characteristics – Transmitter

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Input differential impedance	R _{in}		100		Ω	Non Condensing
Single ended data input swing	V_{IN_PP}	250		1200	mV	
Transmit Disable Voltage	V_D	V _{CC} -1.3		V_{CC}	V	
Transmit Enable Voltage	V _{EN}	VEE		V _{EE} +0.8	V	
Transmit Disable Assert Time				10	Us	

Electrical Characteristics – Receiver

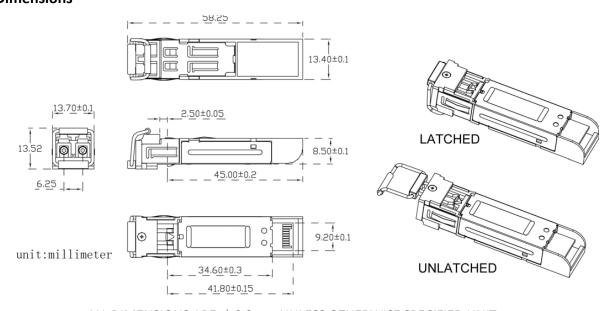
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Single ended data output swing	$V_{\it OUT_PP}$	300	400	800	mV	
Data output rise time	T_R		150	300	ps	20%-80%
LOS Fault	V _{LOS_F}	Vcc -0.5		V _{CC} HOST	V	
LOS Normal	V_{LOS_N}	V_{EE}		V _{EE} +0.5	V	

Digital Diagnostic Functions

The SFP supports the 2-wire serial communication protocol as defined in the SFF 8472. Digital diagnostic information are accessible over the 2-wire interface at the address 0xA2. Digital Diagnostics are internally calibrated by default. A micro controller unit inside the transceiver gathers the monitoring information and reports the status of transceiver.

Transceiver Temperature- Internally measured, represented as a 16 bit signed twos complement value in increments of 1/256 degrees Celsius, Temperature accuracy is better than ±3 degrees Celsius over specified operating temperature and voltage.

Transceiver Supply Power- Internally measured, represented as a 16 bit unsigned integer with the voltage defined as the full 16 bit value (0 – 65535) with LSB equal to 100 μ Volt, yielding a total range of 0 to +6.55 Volts.

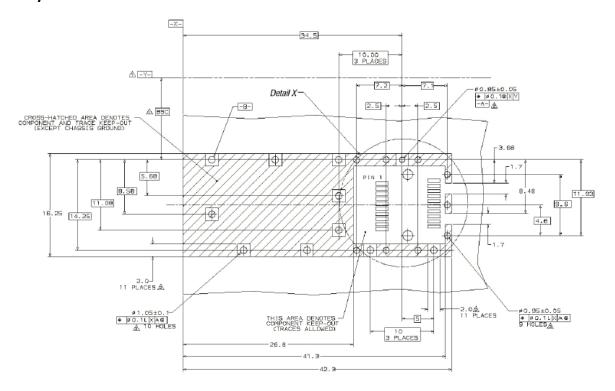

Transceiver TX bias current- Internally measured, represented as a 16 bit unsigned integer with the current defined as the full 16 bit value (0 – 65535) with LSB equal to 2 μ A, yielding a total range of 0 to 131mA. Accuracy is better than ±10% over specified operating temperature and voltage.

Transceiver TX output power- Internally measured, represented as a 16 bit unsigned integer with the power defined as the full 16 bit value (0 – 65535) with LSB equal to 0.1 μ W. Data is assumed to be based on measurement of laser monitor photodiode current. Accuracy is better than ± 3 dB over specified temperature and voltage. Data is not valid when the transmitter is disabled.

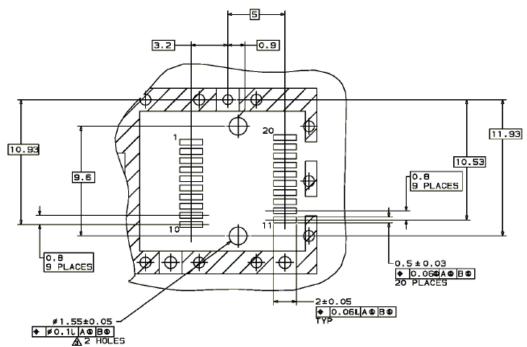
Transceiver RX received optical power- Internally measured, represented as a 16 bit unsigned integer with the power defined as the full 16 bit 35 value (0 – 65535) with LSB equal to 0.1 μ W. Accuracy is better than ±3dB over specified temperature and voltage.

Parameter	Symbol	Accuracy	Units	Report Range	Unit	Remarks
Temperature	T _{MON}	±3	$^{\circ}$	-40 - +95	$^{\circ}$ C	
Voltage	V _{MON}	\pm 0.1	V	2.7 - 3.9	V	
Bias Current	T_F	± 10	%	1 – 80	mA	
Tx Power	V_{LOS_F}	±3	dB	-185	dBm	
Rx Power	V _{LOS_N}	±3	dB	-30 - 0	dBm	

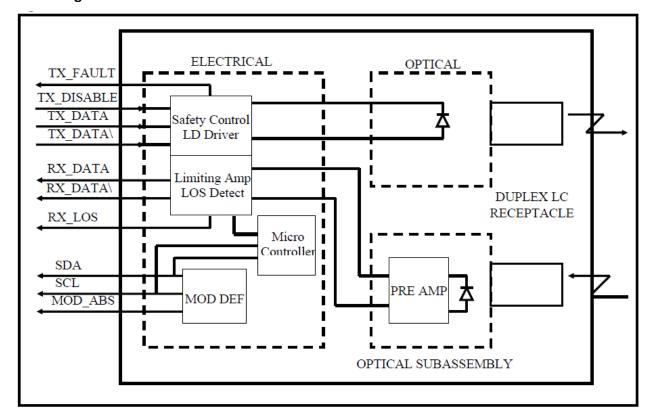
Dimensions



ALL DIMENSIONS ARE ± 0.2 mm UNLESS OTHERWISE SPECIFIED UNIT: mm


PCB Layout Recommendation

Datum and Basic Dimension Established by Customer


Rads and Vias are Chassis Ground, 11 Places

<u>A</u>Through Holes are Unplated

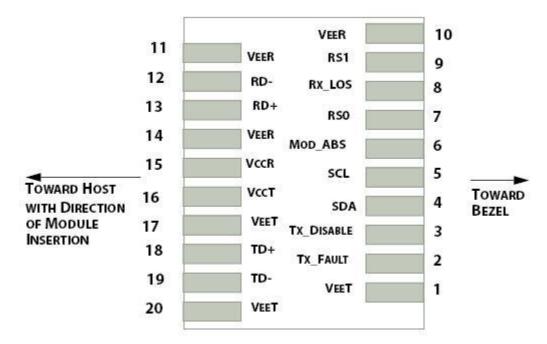
Block Diagram of Transceiver

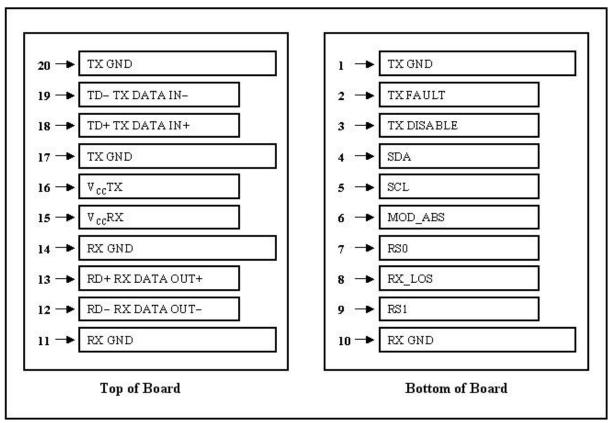
Transmitter Section- The FP laser driver accept differential input data and provide bias and modulation currents for driving a laser. An automatic power-control (APC) feedback loop is incorporated to maintain a constant average optical power.1310nm in an eye safe optical subassembly (OSA) mates to the fiber cable.

TX_DISABLE- The TX_DISABLE signal is high (TTL logic "1") to turn off the laser output. The laser will turn on within 1ms when TX_DISABLE is low (TTL logic "0").

TX_FAULT- When the TX_FAULT signal is high, output indicates a laser fault of some kind. Low indicates normal operation.

Receiver Section- The receiver utilizes a PIN detector integrated with a trans-impedance preamplifier in an OSA. This OSA is connected to a Limiting Amplifier which providing post-amplification quantization, and optical signal detection. The limiting Amplifier is AC-coupled to the transimpedance amplifier, with internal 100Ω differential termination.


Receive Loss (RX_LOS)- The RX_LOS is high (logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in TTL level.


Controller Section- The micro controller unit monitors the operation information of LD driver and Limiting Amplifier and report these status to the customer.

Electrical Pad Layout

Pin Assignment

PIN#	Symbol	Description	Remarks
1	VEET	Transmitter ground (common with receiver	Circuit ground is isolated
		ground)	from chassis ground
2	TFAULT	Transmitter Fault	
3	TDIS	Transmitter Disable. Laser output disable on	Disabled: TDIS>2V or open
		high or open	Enabled: TDIS<0.8V
4	SDA	Data line for serial ID	Should Be pulled up with
5	SCL	Clock line for serial ID	4.7k – 10k ohm on host
6	MOD_ABS	Module Absent. Ground within the module	board to a voltage between 2V and 3.6V
7	RS0	No Connection required	
8	LOS	Loss of Signal indication. Logic 0 indicates	LOS is open collector
		normal operation	output
9	RS1	+3.3V Power Supply	Circuit ground is isolated
10	VEER	Receiver ground (common with transmitter	from chassis ground
		ground)	_
11	VEER	Receiver ground (common with transmitter	
		ground)	
12	RD-	Receiver Inverted DATA out. AC coupled	
13	RD+	Receiver Non-inverted DATA out. AC coupled	
14	VEER	Receiver ground (common with transmitter	Circuit ground is isolated
		ground)	from chassis ground
15	VCCR	Receiver power supply	
16	VCCT	Transmitter power supply	Same as Pin# 1
17	VEET	Transmitter ground (common with receiver	Circuit ground is connected
		ground)	to chassis ground
18	TD+	Transmitter Non-inverted DATA out. AC	
		coupled	
19	TD-	Transmitter Inverted DATA out. AC coupled	
20	VEET	Transmitter ground (common with receiver	Circuit ground is connected
		ground)	to chassis ground

References

- 1. IEEE standard 802.3. IEEE Standard Department, 2002.
- 2. Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 2000.
- 3. Digital Diagnostics Monitoring Interface for Optical Transceivers SFF-8472.
- 4. Bellcore GR-253 and ITU-T G.957 Specifications.